Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.491
Filter
1.
Rev. Ciênc. Saúde ; 13(3): 23-30, 20230921.
Article in English | LILACS | ID: biblio-1510835

ABSTRACT

Objective: The present study aims to evaluate the viability of adult human neural cells in culture obtained from traumatized brain tissues collected in emergency surgery procedures. Methods: Exploratory, descriptive, quantitative and cross-sectional study evaluating samples obtained from patients who underwent traumatic brain injury with extrusion of brain tissue submitted to cell culture in a standardized medium, being preserved during 168h. After observation under phase contrast microscopy and immunohistochemical processing for neuronal (MAP-2) and glial (GFAP) markers, morphometric parameters of neural cells (cell body area, dendritic field length and fractal dimension) were evaluated using ImageJ software, with data obtained after 24, 72 and 168h being compared using non-parametric Kruskal Wallis test, followed by Dunn's post hoc test. Results: The explant of the nervous tissue revealed a consolidated pattern of cell migration into the culture medium. Cell proliferation, upon reaching confluence, presented an aspect of cellular distribution juxtaposed along the culture medium at all time points analyzed. Both neurons and glial cells remained viable after 168h in culture, with their morphologies not varying significantly throughout the time points evaluated. Immunohistochemistry for MAP-2 showed a relatively well-preserved cytoskeletal organization. GFAP immunoreactivity revealed activated astrocytes especially at the later time point. Conclusions: Our results point out the viability of cell culture from traumatized human nervous tissue, opening up perspectives for the use of substances of natural origin that may contribute neuroprotectively to neuronal maintenance in culture, allowing future translational approach.


Subject(s)
Humans , Male , Adult , Brain Injuries , Cell Culture Techniques , Neurons , Wounds and Injuries , Traumatology , Immunohistochemistry
2.
Rev. Pesqui. (Univ. Fed. Estado Rio J., Online) ; 15: 11997, 2023. ilus, tab
Article in English, Portuguese | BDENF, LILACS | ID: biblio-1518479

ABSTRACT

Objetivo: construir um modelo que explique a qualidade de vida relacionada à saúde entre adolescentes escolares a partir do instrumento KIDSCREEN-27 por meio da criação de uma rede neural artificial. Método: estudo transversal e analítico com 635 adolescentes utilizando-se o KIDSCREEN-27. Foi desenvolvida uma rede neural artificial com quatro camadas para avaliar a variável qualidade de vida relacionada à saúde por meio da média das respostas. Para as três primeiras camadas de neurônios foi utilizada função logística como função de transferência e para a ativação foi utilizada função linear. Resultados: a rede neural alcançou acurácia de 98,96% e quando comparadas as dimensões do KIDSCREEN-27 com sexo e prática de atividades físicas todas apresentaram associação estatística significativa, exceto as dimensões suporte social e grupo de pares e ambiente escolar. Conclusão: os resultados podem ter importantes consequências para a identificação de adolescentes em risco e o direcionamento de políticas públicas de saúde


Objective: to construct a model that explains the health-related quality of life among school adolescents from the KIDSCREEN-27 instrument through the creation of an artificial neural network. Method: cross-sectional and analytical study with 635 adolescents using KIDSCREEN-27. An artificial neural network with four layers was developed to evaluate the variable health-related quality of life by means of the mean responses. For the first three layers of neurons, logistic function was used as transfer function and linear function was used for activation. Results: the neural network reached accuracy of 98.96% and when compared the dimensions of kidscreen-27 with sex and practice of physical activities all presented significant statistical association, except the dimensions social support and peer group and school environment. Conclusion: the results may have important consequences for the identification of adolescents at risk and the direction of public health policies


Objetivo: construir un modelo que explique la calidad de vida relacionada con la salud de los adolescentes escolares a partir del instrumento KIDSCREEN-27 a través de la creación de una red neuronal artificial. Método: estudio transversal y analítico con 635 adolescentes utilizando KIDSCREEN-27. Se desarrolló una red neuronal artificial con cuatro capas para evaluar la variable calidad de vida relacionada con la salud mediante las respuestas medias. Para las tres primeras capas de neuronas, la función logística se utilizó como función de transferencia y la función lineal se utilizó para la activación. Resultados: la red neuronal alcanzó una precisión del 98,96% y cuando se compararon las dimensiones de kidscreen-27 con el sexo y la práctica de actividades físicas todos presentaron una asociación estadística significativa, excepto las dimensiones de apoyo social y grupo de pares y entorno escolar. Conclusión:los resultados pueden tener consecuencias importantes para la identificación de adolescentes en riesgo y la orientación de las políticas de salud pública


Subject(s)
Humans , Male , Female , Child , Adolescent , Quality of Life , Public Health , Adolescent Health , Neurons
3.
Neuroscience Bulletin ; (6): 409-424, 2023.
Article in English | WPRIM | ID: wpr-971584

ABSTRACT

For decades, memory research has centered on the role of neurons, which do not function in isolation. However, astrocytes play important roles in regulating neuronal recruitment and function at the local and network levels, forming the basis for information processing as well as memory formation and storage. In this review, we discuss the role of astrocytes in memory functions and their cellular underpinnings at multiple time points. We summarize important breakthroughs and controversies in the field as well as potential avenues to further illuminate the role of astrocytes in memory processes.


Subject(s)
Astrocytes , Neuronal Plasticity/physiology , Memory/physiology , Neurons/physiology , Cognition/physiology
4.
Neuroscience Bulletin ; (6): 531-540, 2023.
Article in English | WPRIM | ID: wpr-971577

ABSTRACT

Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.


Subject(s)
Animals , Neuroglia/physiology , Neurons/physiology , Astrocytes , Microglia/physiology , Oligodendroglia , Mammals
5.
Neuroscience Bulletin ; (6): 425-439, 2023.
Article in English | WPRIM | ID: wpr-971574

ABSTRACT

Chronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron-glia and glia-glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.


Subject(s)
Humans , Astrocytes/pathology , Chronic Pain/pathology , Neuroglia/physiology , Neurons/physiology , Synaptic Transmission , Chronic Disease
6.
Neuroscience Bulletin ; (6): 315-327, 2023.
Article in English | WPRIM | ID: wpr-971569

ABSTRACT

The hippocampus has been extensively implicated in spatial navigation in rodents and more recently in bats. Numerous studies have revealed that various kinds of spatial information are encoded across hippocampal regions. In contrast, investigations of spatial behavioral correlates in the primate hippocampus are scarce and have been mostly limited to head-restrained subjects during virtual navigation. However, recent advances made in freely-moving primates suggest marked differences in spatial representations from rodents, albeit some similarities. Here, we review empirical studies examining the neural correlates of spatial navigation in the primate (including human) hippocampus at the levels of local field potentials and single units. The lower frequency theta oscillations are often intermittent. Single neuron responses are highly mixed and task-dependent. We also discuss neuronal selectivity in the eye and head coordinates. Finally, we propose that future studies should focus on investigating both intrinsic and extrinsic population activity and examining spatial coding properties in large-scale hippocampal-neocortical networks across tasks.


Subject(s)
Animals , Humans , Spatial Navigation/physiology , Hippocampus/physiology , Primates , Neurons/physiology , Theta Rhythm/physiology
7.
Neuroscience Bulletin ; (6): 245-260, 2023.
Article in English | WPRIM | ID: wpr-971567

ABSTRACT

Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus. Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus. Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia. In addition, we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens (Re) mediated fear-like defensive behavior. Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus (SC) that projected to the Re-projecting SST-positive neurons in the rostral ZI (SC-ZIrSST-Re pathway). Together, our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.


Subject(s)
Mice , Animals , Zona Incerta/metabolism , Neurons/metabolism , Fear/physiology , Somatostatin/metabolism
8.
Neuroscience Bulletin ; (6): 14-28, 2023.
Article in English | WPRIM | ID: wpr-971562

ABSTRACT

Recent work in decision neuroscience suggests that visual saliency can interact with reward-based choice, and the lateral intraparietal cortex (LIP) is implicated in this process. In this study, we recorded from LIP neurons while monkeys performed a two alternative choice task in which the reward and luminance associated with each offer were varied independently. We discovered that the animal's choice was dictated by the reward amount while the luminance had a marginal effect. In the LIP, neuronal activity corresponded well with the animal's choice pattern, in that a majority of reward-modulated neurons encoded the reward amount in the neuron's preferred hemifield with a positive slope. In contrast, compared to their responses to low luminance, an approximately equal proportion of luminance-sensitive neurons responded to high luminance with increased or decreased activity, leading to a much weaker population-level response. Meanwhile, in the non-preferred hemifield, the strength of encoding for reward amount and luminance was positively correlated, suggesting the integration of these two factors in the LIP. Moreover, neurons encoding reward and luminance were homogeneously distributed along the anterior-posterior axis of the LIP. Overall, our study provides further evidence supporting the neural instantiation of a priority map in the LIP in reward-based decisions.


Subject(s)
Animals , Macaca mulatta/physiology , Parietal Lobe , Neurons/physiology , Saccades , Reward , Photic Stimulation
9.
Neuroscience Bulletin ; (6): 368-378, 2023.
Article in English | WPRIM | ID: wpr-971552

ABSTRACT

Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.


Subject(s)
Humans , Optogenetics , Brain/physiology , Microglia , Chronic Pain/therapy , Neurons/physiology
10.
Neuroscience Bulletin ; (6): 69-82, 2023.
Article in English | WPRIM | ID: wpr-971546

ABSTRACT

The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.


Subject(s)
Transcranial Direct Current Stimulation/methods , Motor Cortex/physiology , Neurons , Transcranial Magnetic Stimulation
11.
Neuroscience Bulletin ; (6): 194-212, 2023.
Article in English | WPRIM | ID: wpr-971540

ABSTRACT

Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.


Subject(s)
Animals , Mice , Depression , Eukaryotic Initiation Factor-4E/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Stroke/metabolism
12.
Neuroscience Bulletin ; (6): 1-13, 2023.
Article in English | WPRIM | ID: wpr-971533

ABSTRACT

Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.


Subject(s)
Axon Initial Segment , Axons/physiology , Neurons , Synapses/physiology , Pyramidal Cells/physiology , Interneurons/physiology , Action Potentials/physiology
13.
Journal of Southern Medical University ; (12): 175-182, 2023.
Article in Chinese | WPRIM | ID: wpr-971512

ABSTRACT

OBJECTIVE@#To establish an efficient protocol for directed differentiation of human induced pluripotent stem cells (hiPSCs) into functional midbrain dopaminergic progenitor cells (DAPs) in vitro.@*METHODS@#hiPSCs were induced to differentiate into DAPs in two developmental stages. In the first stage (the first 13 days), hiPSCs were induced into intermediate cells morphologically similar to primitive neuroepithelial cells (NECs) in neural induction medium containing a combination of small molecule compounds. In the second stage, the intermediate cells were further induced in neural differentiation medium until day 28 to obtain DAPs. After CM-DiI staining, the induced DAPs were stereotactically transplanted into the right medial forebrain bundle (MFB) of rat models of Parkinson's disease (PD). Eight weeks after transplantation, the motor behaviors of PD rats was evaluated. Immunofluorescence assay of brain sections of the rats was performed at 2 weeks after transplantation to observe the survival, migration and differentiation of the transplanted cells in the host brain microenvironment.@*RESULTS@#hiPSCs passaged stably on Matrigel showed a normal diploid karyotype, expressed the pluripotency markers OCT4, SOX2, and Nanog, and were positive for alkaline phosphatase. The primitive neuroepithelial cells obtained on day 13 formed dense cell colonies in the form of neural rosettes and expressed the neuroepithelial markers (SOX2, Nestin, and PAX6, 91.3%-92.8%). The DAPs on day 28 highly expressed the specific markers (TH, FOXA2, LMX1A and NURR1, 93.3-96.7%). In rat models of PD, the hiPSCs-DAPs survived and differentiated into TH+, FOXA2+ and Tuj1+ neurons at 2 weeks after transplantation. Eight weeks after transplantation, the motor function of PD rats was significantly improved as shown by water maze test (P < 0.0001) and apomorphine-induced rotation test (P < 0.0001) compared with rats receiving vehicle injection.@*CONCLUSION@#HiPSCs can be effectively induced to differentiate into DAPs capable of differentiating into functional neurons both in vivo and in vitro. In rat models of PD, the transplanted hiPSCs-DAPs can survive for more than 8 weeks in the MFB and differentiate into multiple functional neurocytes to ameliorate neurological deficits of the rats, suggesting the potential value of hiPSCs-DAPs transplantation for treatment of neurological diseases.


Subject(s)
Humans , Rats , Animals , Induced Pluripotent Stem Cells , Cell Differentiation/physiology , Neurons , Parkinson Disease , Mesencephalon , Cells, Cultured
14.
Belo Horizonte; s.n; 2023. 33 p.
Thesis in Portuguese | LILACS, InstitutionalDB, ColecionaSUS | ID: biblio-1435264

ABSTRACT

The medial prefrontal cortex (mPFC) is essential in the execution of cognitive tasks, however very little is known on how these neurons are modulated during specific tasks and which subtype of neurons are responsible for so. Therego, with the intention of addressing this issue, we recorded mPFC gabaergic and glutamatergic activation patterns through fiber photometry (FIP) in mice, while simultaneously performing the Barnes Maze (BM) cognitive task (4 day behavioral trial). In addition, an altered structural and procedural protocol for BM was validated in this study due to necessary modifications allowing FIP and BM to happen simultaneously. A successful protocol validation was followed by our preliminary results, which showed that both glutamatergic and gabaergic neurons presented significant change in activation intensity and number of events in specific contexts throughout the task days. In addition, when stratified and crossed with BM performance parameters, such as latency to complete tasks and adopted strategy, glutamatergic and gabaergic neurons presented a significant decline in both activation patterns and number of activation events throughout the days. This data suggest not only an important role of glutamatergic and gabaergic mPFC neurons in learning, memory and decision making, but also that activation patterns of each of these groups may serve as markers for cognitive progression and/or dysfunction. KEY-WORDS: Memory, Learning, Decision Making, Medial Prefrontal Cortex (mPFC), Fiber Photometry (FIP), Barnes Maze (BM), Glutamatergic, Gabaergic, Neuronal Activity, Neuronal Activation Patterns, Neuronal Dynamics.


O córtex pré-frontal medial (mPFC) é essencial na execução de tarefas cognitivas, no entanto, pouco se sabe sobre como esses neurônios são modulados durante tarefas específicas e qual subtipo de neurônios é responsável por isso. Portanto, com a intenção de abordar essa questão, registramos os padrões de ativação de neurônios gabaérgicos e glutamatérgicos do mPFC por meio de fotometria de fibra (FIP) em camundongos, enquanto realizávamos simultaneamente a tarefa cognitiva do Labirinto de Barnes (BM) (ensaio comportamental de 4 dias). Além disso, um protocolo estrutural e procedimental alterado para o BM foi validado neste estudo devido a modificações necessárias que permitiram a realização simultânea de FIP e BM. Uma validação bem-sucedida do protocolo foi seguida pelos nossos resultados preliminares, que mostraram que tanto os neurônios glutamatérgicos quanto os gabaérgicos apresentaram mudanças significativas na intensidade de ativação e no número de eventos em contextos específicos ao longo dos dias da tarefa. Além disso, quando estratificados e cruzados com parâmetros de desempenho do BM, como latência para completar as tarefas e estratégia adotada, os neurônios glutamatérgicos e gabaérgicos apresentaram uma diminuição significativa nos padrões de ativação e no número de eventos de ativação ao longo dos dias. Esses dados sugerem não apenas um papel importante dos neurônios glutamatérgicos e gabaérgicos do mPFC na aprendizagem, memória e tomada de decisões, mas também que os padrões de ativação de cada um desses grupos podem servir como marcadores de progressão e/ou disfunção cognitiva. PALAVRAS-CHAVE: Memória, Aprendizagem, Tomada de Decisões, Córtex Pré-Frontal Medial (mPFC), Fotometria de Fibra (FIP), Labirinto de Barnes (BM), Glutamatérgico, Gabaérgico, Atividade Neuronal, Padrões de Ativação Neuronal, Dinâmica Neuronal.


Subject(s)
Humans , Male , Female , Photometry , Prefrontal Cortex , Glutamic Acid , GABA Agents , Decision Making , Learning , Memory , GABAergic Neurons , Cognitive Dysfunction , Neurons
15.
Journal of Southern Medical University ; (12): 1102-1109, 2023.
Article in Chinese | WPRIM | ID: wpr-987027

ABSTRACT

OBJECTIVE@#To investigate the variations in the expression of voltage-gated sodium (Nav) channel subunits during development of rat cerebellar Purkinje neurons and their correlation with maturation of electrophysiological characteristics of the neurons.@*METHODS@#We observed the changes in the expression levels of NaV1.1, 1.2, 1.3 and 1.6 during the development of Purkinje neurons using immunohistochemistry in neonatal (5-7 days after birth), juvenile (12-14 days), adolescent (21-24 days), and adult (42-60 days) SD rats. Using whole-cell patch-clamp technique, we recorded the spontaneous electrical activity of the neurons in ex vivo brain slices of rats of different ages to analyze the changes of electrophysiological characteristics of these neurons during development.@*RESULTS@#The expression of NaV subunits in rat cerebellar Purkinje neurons showed significant variations during development. NaV1.1 subunit was highly expressed throughout the developmental stages and increased progressively with age (P < 0.05). NaV1.2 expression was not detected in the neurons in any of the developmental stages (P > 0.05). The expression level of NaV1.3 decreased with development and became undetectable after adolescence (P < 0.05). NaV1.6 expression was not detected during infancy, but increased with further development (P < 0.05). NaV1.1 and NaV1.3 were mainly expressed in the early stages of development. With the maturation of the rats, NaV1.3 expression disappeared and NaV1.6 expression increased in the neurons. NaV1.1 and NaV1.6 were mainly expressed after adolescence. The total NaV protein level increased gradually with development (P < 0.05) and tended to stabilize after adolescence. The spontaneous frequency and excitability of the Purkinje neurons increased gradually with development and reached the mature levels in adolescence. The developmental expression of NaV subunits was positively correlated with discharge frequency (r=0.9942, P < 0.05) and negatively correlated with the excitatory threshold of the neurons (r=0.9891, P < 0.05).@*CONCLUSION@#The changes in the expression levels of NaV subunits are correlated with the maturation of high frequency electrophysiological properties of the neurons, suggesting thatmature NaV subunit expressions is the basis of maturation of electrophysiological characteristics of the neurons.


Subject(s)
Rats , Animals , Purkinje Cells/physiology , Rats, Sprague-Dawley , Neurons , Brain , Sodium/metabolism
16.
Journal of Biomedical Engineering ; (6): 8-19, 2023.
Article in Chinese | WPRIM | ID: wpr-970668

ABSTRACT

Weightlessness in the space environment affects astronauts' learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.


Subject(s)
Animals , Mice , Transcranial Magnetic Stimulation , Hindlimb Suspension , Neurons , Cognitive Dysfunction , Brain
17.
China Journal of Chinese Materia Medica ; (24): 1589-1596, 2023.
Article in Chinese | WPRIM | ID: wpr-970631

ABSTRACT

This study aims to investigate the effect of Bombyx Batryticatus extract(BBE) on behaviors of rats with global cerebral ischemia reperfusion(I/R) and the underlying mechanism. The automatic coagulometer was used to detect the four indices of human plasma coagulation after BBE intervention for quality control of the extract. Sixty 4-week-old male SD rats were randomized into sham operation group(equivalent volume of normal saline, ip), model group(equivalent volume of normal saline, ip), positive drug group(900 IU·kg~(-1) heparin, ip), and low-, medium-, and high-dose BBE groups(0.45, 0.9, and 1.8 mg·g~(-1)·d~(-1) BBE, ip). Except the sham operation group, rats were subjected to bilateral common carotid artery occlusion followed by reperfusion(BCCAO/R) to induce I/R. The administration lasted 7 days for all the groups. The behaviors of rats were examined by beam balance test(BBT). Morphological changes of brain tissue were observed based on hematoxylin-eosin(HE) staining. Immunofluorescence method was used to detect common leukocyte antigen(CD45), leukocyte differentiation antigen(CD11b), and arginase-1(Arg-1) in cerebral cortex(CC). The protein expression of interleukin-1β(IL-1β), interleukin-4(IL-4), interleukin-6(IL-6), and interleukin-10(IL-10) was detected by enzyme-linked immunosorbent assay(ELISA). The non-targeted metabonomics was employed to detect the levels of metabolites in plasma and CC of rats after BBE intervention. The results of quality control showed that the BBE prolonged the activated partial thromboplastin time(APTT), prothrombin time(PT), and thrombin time(TT) of human plasma, which was similar to the anticoagulation effect of BBE obtained previously. The results of behavioral test showed that the BBT score of the model group increased compared with that of the sham operation group. Compared with the model group, BBE reduced the BBT score. As for the histomorphological examination, compared with the sham operation group, the model group showed morphological changes of a lot of nerve cells in CC. The nerve cells with abnormal morphology in CC decreased after the intervention of BBE compared with those in the model group. Compared with the sham operation group, the model group had high average fluorescence intensity of CD45 and CD11b in the CC. The average fluorescence intensity of CD11b decreased and the average fluorescence intensity of Arg-1 increased in CC in the low-dose BBE group compared with those in the model group. The average fluorescence intensity of CD45 and CD11b decreased and the average fluorescence intensity of Arg-1 increased in medium-and high-dose BBE groups compared with those in the model group. The expression of IL-1β and IL-6 was higher and the expression of IL-4 and IL-10 was lower in the model group than in the sham operation group. The expression of IL-1β and IL-6 was lower and the expression of IL-4 and IL-10 was higher in the low-dose, medium-dose, and high-dose BBE groups than in the model group. The results of non-targeted metabonomics showed that 809 metabolites of BBE were identified, and 57 new metabolites in rat plasma and 45 new metabolites in rat CC were found. BBE with anticoagulant effect can improve the behaviors of I/R rats, and the mechanism is that it promotes the polarization of microglia to M2 type, enhances its anti-inflammatory and phagocytic functions, and thus alleviates the damage of nerve cells in CC.


Subject(s)
Humans , Rats , Male , Animals , Interleukin-10 , Rats, Sprague-Dawley , Interleukin-4/metabolism , Bombyx , Interleukin-6/metabolism , Microglia/metabolism , Saline Solution/metabolism , Reperfusion Injury/metabolism , Brain Ischemia/metabolism , Cerebral Infarction , Reperfusion , Neurons
18.
Chinese Journal of Biotechnology ; (12): 7-18, 2023.
Article in Chinese | WPRIM | ID: wpr-970355

ABSTRACT

Viruses are powerful tools for the study of modern neurosciences. Most of the research on the connection and function of neurons were done by using recombinant viruses, among which neurotropic herpesvirus is one of the most important tools. With the continuous development of genetic engineering and molecular biology techniques, several recombinant neurophilic herpesviruses have been engineered into different viral tools for neuroscience research. This review describes and discusses several common and widely used neurophilic herpesviruses as nerve conduction tracers, viral vectors for neurological diseases, and lytic viruses for neuro-oncology applications, which provides a reference for further exploring the function of neurophilic herpesviruses.


Subject(s)
Herpesviridae/genetics , Neurosciences , Genetic Vectors/genetics , Genetic Engineering , Neurons
19.
Biomedical and Environmental Sciences ; (12): 50-59, 2023.
Article in English | WPRIM | ID: wpr-970290

ABSTRACT

OBJECTIVE@#Exposure to high intensity, low frequency noise (HI-LFN) causes vibroacoustic disease (VAD), with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HI-LFN.@*METHODS@#Adult wild-type and transient receptor potential vanilloid subtype 4 knockout (TRPV4-/-) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.@*RESULTS@#The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilament-positive nerve fibers in the cornu ammonis 1 (CA1) and dentate gyrus (DG) hippocampal areas in wild-type mice. However, TRPV4-/- mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.@*CONCLUSION@#TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus, which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.


Subject(s)
Animals , Mice , TRPV Cation Channels/metabolism , Intermediate Filaments/metabolism , Hippocampus/metabolism , Neurons/metabolism , Memory Disorders/metabolism
20.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 540-550, 2023.
Article in English | WPRIM | ID: wpr-982723

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).


Subject(s)
Humans , NF-kappa B/metabolism , Ginsenosides/pharmacology , Amyotrophic Lateral Sclerosis/genetics , Culture Media, Conditioned/pharmacology , Superoxide Dismutase-1 , Neurodegenerative Diseases , Neurons/metabolism , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL